Pemodelan Energi Listrik yang Dihasilkan oleh PV Menggunakan Metode Time Series dan Neural Network untuk Komparasi

  • Umi Yuliatin PEM Akamigas
  • Asepta Surya Wardhana PEM Akamigas
  • Astrie Kusuma Dewi PEM Akamigas
  • Chalidia Nurin Hamdani PEM Akamigas
Keywords: Time Series Analysis, Neural Network, Produksi Listrik

Abstract

Renewable energy sourced from the sun has become one of the focal points of alternative renewable energy as fossil energy reserves diminish. Solar energy, which is converted into electricity using photovoltaic technology, is influenced by several variables, particularly weather variables such as temperature, humidity, and solar radiation. This study involves modeling and forecasting the power output of a 100 Watt PV Solar system using Time Series Analysis and Neural Network techniques. The PV solar system is connected to various weather variable measurement sensors, such as a pyranometer, temperature sensor, and humidity sensor. The data collected from these sensors serve as input for calculating the power output of the installed 100 Watt PV system. The power output is observed on an hourly and daily basis. The modeling results indicate that the best model obtained using ARIMA with variables is ARIMA (0,0,2), incorporating all weather variables (Radiation, Humidity, Temperature*, Wind, and Light*) with a MAPE (Mean Absolute Percentage Error) of 2.91%. Meanwhile, for the best Neural Network (LSTM) model, the input variables of radiation, temperature, and intensity achieved a MAPE of 3.41%

Downloads

Download data is not yet available.

References

J. Shi, W. J. Lee, Y. Liu, Y. Yang, and P. Wang, “Forecasting power output of photovoltaic systems based on weather classification and support vector machines,” in IEEE Transactions on Industry Applications, 2012, vol. 48, no. 3. doi: 10.1109/TIA.2012.2190816.
M. A. Al-Nimr, S. Kiwan, and H. Sharadga, “Simulation of a novel hybrid solar photovoltaic/wind system to maintain the cell surface temperature and to generate electricity,” Int. J. Energy Res., vol. 42, no. 3, 2018, doi: 10.1002/er.3885.
E. Prasetyono, R. W. Wicaksana, and N. A. Windarko, “Secara Real Time Berbasis Mikrokontroler,” no. 2, pp. 190–199, 2015.
H. Sharadga, S. Hajimirza, and R. S. Balog, “Time series forecasting of solar power generation for large-scale photovoltaic plants,” Renew. Energy, vol. 150, pp. 797–807, 2020, doi: 10.1016/j.renene.2019.12.131.
U. Kartini, “Peramalan Daya Photovoltaic Jangka Sangat Pendek Menggunakan Metode Decomposition Backpropagation Neural Network (D-Bpnn),” J. Tek. Elektro, vol. 4, no. 1, pp. 88–100, 2557.
S. Makridakis, S. Wheelwright C, and V. E. McGee, Metode dan Aplikasi Peramalan Edisi Kedua. Terjemahan dari Forecasting: Methods and Applications. 1999.
G. U. Yule, “Why do we Sometimes get Nonsense-Correlations between Time-Series?--A Study in Sampling and the Nature of Time-Series,” J. R. Stat. Soc., vol. 89, no. 1, 1926, doi: 10.2307/2341482.
W. W. S. Wie, Time Series Analysis: Univariate and Multivariate Methods Second Edition, vol. SFB 373, no. Chapter 5. 2006.
E. Slutzky, “The Summation of Random Causes as the Source of Cyclic Processes,” Econometrica, vol. 5, no. 2, 1937, doi: 10.2307/1907241.
G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: Forecasting and control: Fourth edition. 2013. doi: 10.1002/9781118619193.
Published
2023-10-06
How to Cite
Yuliatin, U., Wardhana, A. S., Dewi, A. K., & Hamdani, C. N. (2023). Pemodelan Energi Listrik yang Dihasilkan oleh PV Menggunakan Metode Time Series dan Neural Network untuk Komparasi. EDUKASIA: Jurnal Pendidikan Dan Pembelajaran, 4(2), 2023-2030. https://doi.org/10.62775/edukasia.v4i2.541